Viscosity Approximation Methods in Reflexive Banach Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscosity approximation methods for pseudocontractive mappings in Banach spaces

Strong convergence of implicit viscosity approximation methods for pseudocontractive mappings in Banach spaces Lu-Chuan Ceng a b , Adrian Petruşel c , Mu-Ming Wong d & Su-Jane Yu e a Department of Mathematics, Shanghai Normal University, Shanghai 200234, China b Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China c Department of Applied Mathematics, Babeş-Bolyai Univer...

متن کامل

Q-reflexive Banach Spaces

Let E be a Banach space. There are several natural ways in which any polynomial P ∈ P(E) can be extended to P̃ ∈ P(E), in such a way that the extension mapping is continuous and linear (see, for example, [6]). Taking the double transpose of the extension mapping P → P̃ yields a linear, continuous mapping from P(E) into P(E). Further, since P(E) is a dual space, it follows that there is a natural ...

متن کامل

Strong Convergence Theorems for Strictly Pseudo-contractive Mappings by Viscosity Approximation Methods in Banach Spaces

In this paper, we introduce a modified Mann iterative process for strictly pseudo-contractive mappings and obtain a strong convergence theorem in the framework of q-uniformly smooth Banach spaces. Our results improve and extend the recent ones announced by (Kim and Xu 2005), (Xu 2004) and some others.

متن کامل

On Polar Cones and Differentiability in Reflexive Banach Spaces

Let $X$ be a  Banach  space, $Csubset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...

متن کامل

Uniformly convex Banach spaces are reflexive - constructively

We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: British Journal of Mathematics & Computer Science

سال: 2017

ISSN: 2231-0851

DOI: 10.9734/bjmcs/2017/33396